Circle geometry:

Secant line and Chord properties of a circle with the center C:

A perpendicular line from C bisects the chord: $A D=D B$

A radius bisecting a chord at D is A line perpendicular bisector to perpendicular to it: $\angle C D A=90^{\circ}$ any chord passes through C

Tangent line Properties:
The radius $C D$, and the tangent line $A B$ at the tangent point D, are perpendicular

Two tangent line segments from an external point A to a circle, are equal: $A B=A D$

Central angles: Central angles subtended to equal arcs or chords are equal and vice versa

Inscribed angles: Inscribed angles are equal to the $1 / 2$ central angles subtended to the same arc/chord

$$
<A D B=1 / 2<A C B
$$

Inscribed angles subtended to the diameter of a circle are always 90°. Half of central angle

In a cyclic quadrilateral (inscribed in a circle) the sum of 2 opposite angles is 180°. Each one is half of its corresponding central angle

$\alpha+\delta=180^{\circ}$ and $\beta+\varepsilon=180^{\circ}$

Inscribed angles subtended to equal arc/chord are equal

Inscribed angles subtended to the same arc/chord AB, are equal

Inscribed angle and the tangent line to a circle:
A tangent line at the point A and the secant line $A B$, make an inscribed angle θ, subtend to the chord $A B$, therefore any other inscribed angles subtended to the same chord $A B$, have the same angle θ

